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RESIDUES OF INTEGRALS WITH THREE-DIMENSIONAL NDLTIPOLE 
SINGULARITIES, WITH APPLICATION TO THE LAGALLY THEOREM 

I,  INTRODUCTION 

An important mathematical relation in the theory of three-dimen- 

sional irrotational flow is the Gauss-Green transformation between volume 

and surface integrals. A very useful result of this transformation, 

Green's third formula, requires, in its derivation, the evaluation of the 

limit of a singular integral over the surface of a sphere as the radius 

of the sphere approaches zero. Since, in this case, the singularity is 

due to the potential of a source at the center of the sphere, its limit 

may be called the residue of a source. Similarly, limits of integrals 

over the surface of a sphere of vanishingly small radius, with higher- 

order derivatives of the source potential in the integrand, will be 

called residues of multipoles. The latter occur in the derivation of the 

Lagally theorem for the force and moment acting on a body moving in an 

irrotational flow when multipoles are present in the hydrodynamic 

singularity system within the body (see Landweber, 1967 and Landweber and 

Miloh, 1980, 1981). 

In contrast to the very simple derivation of the residue occurring 

in Green's third formula, the evaluation of the multipole residues was a 

challenging application of the theory of spherical harmonics. The 

derivations of a set of multipole residues, which were required but not 

included in the aforementioned references, will be presented here. 

This work, is dedicated to my long-time friend and colleague, CJiia- 

Shun Yih, with whom I worked 30 years ago on the generalization of the 

Lagally theorem to unsteady flows (1956). Support by the Office of Naval 

Research under Contract N00014-83-K-0136 (NR-062-183) is gratefully 

acknowledged. 

II.  FORMULATION AND TABULATION OF RESULTS 

The velocity potential :j) of a multipole of strength M and of order 

q = a+8+Yf situated at a point P(Xg,yg,Zg), with position vector r , of 

a rectangular Cartesian coordinate system (x,y,z) will be expressed as 



^P = - <^h'  °s =-VV7' ^' = (x-x^)^(y-y3)^(z-Z3)2       (i) 
8x  3y  9' 

s  s  s 

Let S denote the surface of a sphere of radius c with center at the point 

0(x , V . z ) and position vector r  such that c > b =  r„ - r  ,  It is o' -'o'  o      ^ o I P   o I 
necessary to displace the singularity from the origin in order to ensure 

that the coordinates (x,y,z) of a point on S are independent of (Xg,yg, 

Zg)*  Put 

p = r-r=pn, p=r-r=bn (2) 
o       P   P   o    P 

where n  is the unit vector in the direction from 0 to P and n the unit 
P 

vector from 0 to the point (x,y,z). 

The integrals of interest involve a pair of vectors u and v where 

u = v$ , V = vy, and f is regular harmonic within the sphere and on 

S.  Thus both u and v are irrotational and solenoidal within the sphere 
P 

and on S, except for the multipole singularity of $ at P. Results for 

the residues are given in Table 1 . Their derivations will be presented 

in the following sections. 

We observe that, when q = 0, the first integral in Table 1 reduces 

to the residue of Green's third formula, 

lim  f f n'.V(1/R)dS = - 4irM>l'(x ,y ,z ) (3) 
A s  s  s c->o  S 

The second integral is a corollary of the first since each of its 

components is of the type of the first.   This shows that the second 

integral does not require the conditions Vxv = 0 and V«v = 0.  it is 

included in the list of integrals because pairs of the three integrals, 

(5),  (6)  and  (7),  yield the residues for the three vector-product 

combinations of u , v and n, viz: 
P 



Table 1.  Multipole Residues 

C-KD    S 

lin,   /  n.u^ 7 dS  = AlMlj^l^ D^(v), (5) 
C-XD    S 

lim   /  Up.v  ndS   =   (2q^tH2q^3)   ^s^^^P 
C-KD    S 

(•  4TrMq     Q 
lim   f   $pV.ndS   =   -^D^(')')p 
C-K3    S 

(6) 

lim   / v.n UpdS  =     ^'ql^ D^(v)p (7) 
c-*o  S 

lim   / n.UppxvdS  = ^"^^^  [D^(rxv)p  -  rpXD^Cv)^] (S) 
C-K)    S 

lim   f v.n   pxUpdS  = -g^  [D^Crxv)^  -  r^^^iv)^] m 
C-KD    S 

(10) 

lim   f   $^ndS   =  - ^ M6,   D^  r (11) 
'     P 3 1q  s     P 

C-K3   S 

lim   f   $prxndS  =  - |i M6^   rpXD^  r^   (12) 
C-HD S 

* ( )p indicates that the quantity between the parentheses is evaluated at 'P 

the point P(Xg,Yg,Zs) 



li» / »(™ MS = J«ia±li^ 0^,v,, <13) 
c->o S 

lim / vx(UpXn)dS =|j^D^(v)p (14) 
C-K3 S 

lim f UpX(nxv) dS = - ^g|^^^^ Df(v)p (15) 
C-K3 S 

III.  SOME LEMMAS 

It will facilitate the derivations if we first collect some useful 

spherical-harmonic properties. Put ^ = x-x , n = y-y , ^ = Z-ZQ, SO 

that p has the components (E,,T\,t,)> We shall also employ spherical 

coordinates {p,u,(()), ]x = cos 6, with the origin at the point 0 and the 

polar axis along OP. 

a) The scalar ^ and the vector viE,rT],c,) may be expanded in the 

forms 

f =  S "i- (5/T1,?), ? = p^'s (u,!},)  , .        (16a) 
„ m m     m 

m=0 

V =  Z V (^,T],0.   V  = p"* T (y,()>) (16b) 
„ m mm m=0 

where f and v  are solid spherical harmonics, homogeneous of degree m 
m     m     _ 

in 5,Ti,5, and S^  and T are the corresponding surface spherical harmonics 

of order m. 

b)  Since ^y and v are homogeneous in 5,n,?, they satisfy the Euler 
m     m 

relations 

p.y^ = m'P ,  p.Vv = mv (17] 
mm      mm 



c)  when the irrotational vector v is regular harmonic, the quanti- 

ties pxv and p«v are also regular harmonic. 

Proof;  In index notation with the summation convention, we have 

95   3?     ^ijk   ^j^k ~   ^ijk   ^^j   9?   9?    "^  ^   9?     ^jl^   ~  ^Hjk   9?    ~  ° 
I     Z ill 3 

.2 9  V. 9v. 9v. 
9 ^ 11 1 

'h'^l    '   '        '^I'h ''l    '' '        'k 

where e   is the permutation tensor, and 6  is the kronecker delta 
i:k ij 

function. 

d)  The orthogonality relation between Legendre polynomials P (y) 
_ n 

and a surface spherical harmonic Sj^^ or T shows that the integral of 

their product over the unit sphere is proportional to the value of Sjj, 

or T when u = 1; (see MacRobert, 1945).  Since S_ or T is homogeneous 
m ™    m 

of degree m in g,r\,c,,  and the point P lies on the polar axis, this result 

may be expressed in terms of (ij^ )  = p (S )  or (v )  = p^(.T  ) , 
mP   PmP     mP   pmP 

1 2Tr      S        4Tr6   {"V  ) 

-1 o   "    T ^"^"^^   (v ) 
m m P 

e) 

1 2iT      . 4Tr6   9'i'    9'? 

b'^-^ /  / P:(.)e^*S^(y,,)dud^ -^^  (^ .i ^)^    (19) 

where P'(u) is the associated Legendre function of degree n and order 1, 
 n 

i = /-I, and the (x,y,z)-coordinate system has been taken so that the x- 

axis is parallel to the polar axis of the spherical coordinate system. 

Proof:   S (y,(t)) may be expanded in the series 
m 

S  = AP (y) + P (y) (B cos 4 + C sin 4) + ... 
m    m      n ^ 



Then, by orthogonality, we have, 

1   2lT 

f  / 
-1 0 
//  P: (u)e^\dud^=^f^f^6^^(B.iC) (20) 

In terms of unit vectors e , e , e  in the directions of increasing 

values of (p,0,(})), the gradient of ^    at (1,0,(1)) is 

^ ^^ ^1 r, X "^ ®i^ "*" T in(m+1) [e„(B cos A + C sinA) + e, (-B sin* + C cos A) ] m1,U,q)12 2      ^        ^     o        ^        ^ 

Then, taking components of the gradient in the y- and z-directions, we 

obtain ' 

which, substituted for B and C in (20), yields (19), the result we wished 

to prove. '   ' 

f) lim D'^ t!} = D'^ L-"*} 6 (21) s —    s ^—   qm 
C-KD      V V     ^ 

m 

since the terras of  the expansion  (16a,b) with m<q vanish under q 

differentiations, and those with m>q vanish as c->o. 

g) Two different expansions of the velocity field of a multipole 

u will be useful.  We have 
P 

u  = MD*5(R/R3)^ R = -_- (22) 
p    s P 

The expansion of 1/R then gives 

and 

— n    _ 

^ = ^s I = ^s  " ^ ^n^t^^' " = "'^P' "P = Pp/Pp    ^23e 
R n=1 p 

3= " -^^K^^^""- V/^N^ (23b) 
R   n=1 p 



sxnce 

_ p    _ 
V (b'^P ) = nb'^"''p n + b"p V  (r^) • n s   n n p     n s  b 

= b"^"^ [nP n + ? (n-yn )] 
n P   n    P 

and (see MacRobert, 1947) 

Here the dot indicates differentiation with respect to the argument.  We 

shall also require the relation 

P^(y) - pP^_/u) =nP^_/u) (25) 

IV.  DERIVATIONS OF RESIDOES 

The residues in Table 1 will be derived in the order shown, except 

that we must first verify (15) in order to derive (6). 

A.  Derivation of (4) cuid (5).  Substituting (16a) for "y, (22) and 

(23b) for u , putting 
P 

2 
dS = -c dyd())  ■ 

and applying (25), we obtain   "■ 

oo  CO 1 2TT 

f n.u Y dS = MD'I  E   T. j j  c"'"'^+^b^-''nP   (y)S dyd^ 
p        s      ^ , ^                             n-1    m S   ^          m=o n=1 -1 0 

Orthogonality of the surface spherical harmonics requires n=m+1, so that 

the right number of this equation becomes 



1 2TT 

MD'^     ?   (m+Db"*   f f P   (ii)S  dudch 
s •', A     m m        ^ 

m=o -1 0 

or,   by   (18), 

4Tr(m+1 )      q,      ^ 4TrM(q+1 )   „q, „, 
2m+1 s     m  P 2q+i s        P 

C-K3       m=o 

since the terms of the expansion of "P in (16a) vanish under q differen- 

tiations, and those with m > q vanish as C-K). This is the result given 

in (4). As has already been remarked, the residue (5) is an immediate 

consequence of (4). 

B.  Derivation of (6) and (15).  Substituting (16b) for v, and (22) 

and (23a) for u , we obtain 
P . ;■.     ■ ._ 

  ^ 1 2 IT       
r u x(nxv)dS = (0^5?  ? ^,m-n+1 ^^n^ xf / P (y)nxT dudt), 
„  p s                 s  , „ n     m 
S m=o n=o           -1 0 

According to Lemma c, nxT is a surface spherical harmonic of order m+1, 
m 

and hence, by orthogonality, the integral vanishes unless n=m+1.  Then, 

by (18), 

lim / UpX(nxv)dS = MD^V^x ? -^ ^^Vi )p 
C-K3 S n=0 

= 4^D^[Vx(^7 )]^ 
2q+3  s  s    q P 

since the differential operator D V is of order q + 1.  But 
s   s 

V x(pxv)     =   (v   ^V   p +   pV   -v     -   p^V V     -  V  V   'p)     =  -   (q+2) 
S P qs sq sq qsP 

since 



V 'Vp = V , V«v = 0, V»p = 3 
q    q   q 

and, by (17), 

P'Vv  = qv 
q   q   " 

Then, by (21), 

lim / UpX(nxv)dS = - -^^  ^s^^q^P = "   2q+3   °s^^^P 
C-K3 S 

as we wished to show. 

The result in (5) can now be obtained as the sum of the residues in 

(5) and (15), since 

u 'V n = u x(nxv) + n»u v 
P       P P 

C. Derivation of (7). By the same procedure as in the previous 

cases, the integral in (7) is first expressed as a double summation and 

then reduced to the single term 

lim f 7.n u dS =,r^ D<5V (7-v )„   . 
■'      P    2q+3  s s   q P 

C-KJ S ^ , 

since, by Lemma c, T ^n is a surface spherical harmonic.  Also put v 
m q 

= VP , where f   is a spherical harmonic of degree q+1.  Then we have, 
q+1        q+1       ^ 

by (17), 

V ("p«v )  = V (^'Vy   )  = (q+1)V (f   )  = (q+1)(v ) 
s    q P    s     q+1 P s  q+1 p   .      q P 

Hence, by (21), 

r ,    4TrM(q+1)  q -      4TTM(q+1 ) n<5f^^ 
lim / v.n UpdS = -^^^73  D^(v^)p =   2q+3   °s^^^ 
C-K) S _: 

..:■>. ■-.9 



as was stated. 

D.   Derivation of (8).   Since pxv is regular harmonic (Lemma c) 

and p=r-r , we obtain from (5) 
o 

lim   /  n.Uppxv dS  =  lim |r^ D^   [ (r-r^)xv]^ 
C^O    S C-KD 

=   4TTMq   ^^q   ^- ^  -^      _  7     ^   ^q   (")    j 
2q+1        s P P s p 

in agreement with   (8). 

E.     Derivation of   (9).     As  in the derivation of   (7),   we have 

p.v   =   p.Vt  =     T.   p'Vf     =   E     m^     =   Z     rape's (26) 
mm m 

m=o m=o m=o 

Hence, by (22) and (23b), since p=pn, the integral in (9) becomes 

, n-1—    , „ 
 ^ __ 00  00 mb  n    1 2 IT  

I  = / vn pxu dS =  MD'^     I       I     2. ^   r     r ^ ^    ,(y)S dpdA 
9       ' P      s      ,   n-m-1   J i n-1 ^ m ^ ^ 

S m=o n=1  c       -10 

We have 

n = pn + sin 9 (j cos A + k sin (})) (27) 
P 

where n , j and k are an orthogonal set of unit vectors.  Hence, applying 

(19) and putting bn  = p , we obtain 

and then, since p = r -r„, 
P   P  0 

li^ I = i!I^ [0^5 (7x7) - 7 XD'I (7) ] 
9   2q+1   S      P    P  s    P 

C-K3 

10 



in agreement with (9). 

P.  Derivation of (10).  The desired result is immediately obtained 

by writing 

n 

p      8     n+1  n /^ 
n=o c 

and applying (26), (18), and (21). 

G.   Derivation of  (11).   Since n is also a surface spherical 

harmonic, application of (27) and (28) yields, by orthogonality. 

since bn  = p = r -r . This agrees with (11). 
P   P   P  0 

H.   Derivation of  (12).   Substituting r = r +cn into  (12)  and 
o 

applying (11), we obtain 

Ixm f $ rxndS = lim r x f $ ndS 
P o   P 

C-KD   S C-HD S 

^ M6    7 XD'^F 
3 1q  P     s   P 

in agreement with   (12). 

V.     EaCAMPLE 

Force on a Stationary Sphere in a Steady, Slightly Honuniform Flow 

A sphere of radius c is introduced into an irrotational flow of an 

inviscid fluid. We shall employ a rectangular, Cartesian coordinate 

system (x,y,z), and a spherical coordinate system (R,p,(t)), y = cos9, with 

11 



polar axis along the x-axis and both with origin at the center of the 

sphere, so that 

X = R cos 9, y = R sin 0 cos (j), z = R sin 9 sin i^ (29) 

The velocity potential of the undisturbed flow will be written as 

2 1 
f =   UR\i  +  R  S   {y,(j)),   S     =  A P   (y)   +  P   {^IXA  cos ())  +  B  sine})) 

2 
+  P2{u)(A2COS   2(|) +  B^  sin   2(|)) (30) 

This corresponds to the most general harmonic flow quadratic in x,y,z. 

The X-axis has been taken in the direction of the. uniform stream, 

represented by  the  first  term.     Its  expression  in  terms  of  x,y,z   is 

12 2 2 2     2 
'P =  Ux  + — A   (2x     -  y     -  z   )   +   3A xy  +   3B  xz   +   3A   (y  -z   )   +   3B  yz 

2 12 12 
=  Ux+A^x +(3A2--^A^)y -(3A2+"^AQ)Z  +3B2yz+3B.| ZX+3A. xy (31) 

The  velocity  field  corresponding  to  W is   then 

V  =   V^  =  i(U+2A  X+3A  y+3B   z)+j[3A  x+(6A  -A   )y+3B   z] 
o 111 2     o 2 

+  k   [3B  X  +   3B  y -   (6A     +  A   )z] (32) 
1 2 2 o 

where i,j,k are the unit vectors in the x,y,z directions. 

The disturbance potential $ which satisfies the boundary condition 

^($4- f) = 0 (33) 
R=c 

12 



is 

3     5 
$ = -y^-Ji + 2c_^ S„(u,(t)) (34) 

2     3  2 
2R     3R 

Each of the terms of (34) can be expressed in terms of multipoles 

situated at the center of the sphere by applying the formula given by 

Hobson (1931), 

n  n-m 
1    m, > ,im<j)   (-1 ) J  ,3  ,.9,ml /oc\ 

R 9x 

which gives 

2     9x R'   3     2   2 R 
R R       9x 

1 1 
P2(u) cos ())   g2  ^  P2(y) sin (|)   9^1 

3     ^ 3x9y R'      3    ^ 9x9z R 
R R 

V^iv)   cos 2(j)   g2   g2   ^    P2(u) sin 2({)     ^2  ^ 

3       " ^  2 ~  2 ^ R'       3      "^ 2 9y9z R 
R 9y   9z R 

(36) 

The force on the sphere can now be obtained from the Lagally formula 

(Landweber, 1967) 

F = - 4Trp E M {d^) (37) 
s  s  o 

s . ;■ 

Here, by (1) and (36), the successive operators D are 

13 



2     2      2 

s   9x' ^s " ^3x3y' ax9z''* *3Y9Z^ 

— 2 
Since v, qiven in (32), is linear in x,y,z, the second derivatives D do 

s 
not  contribute   to   F,   and hence   F becomes 

— 3     3v 
F =   -   2iTpUc     {-—) ^ 9x'o 

= - 2TTpUc^(2iA  + 3jA  + 3kB ) (38) 
oil 

1   3 
We observe that —  Uc  is the doublet strength at the center of the 

sphere in a uniform stream.  The result in (38) is the well-known Lagally 

expression for the force on a doublet in a nonuniform stream, but, 

unexpectedly,  with the doublet strength unaffected by the quadratic 

nonuniformity. 

The foregoing procedure can be readily extended to nonuniform flows 

of higher order.   If the velocity potential contains a homogeneous 

harmonic of degree n, its contribution v  , to the velocity would be of 
n-1 

degree n-1.  Then 

(D'^ V  J  = 6   , (D''"'' W       ) (39) 
s  n-1 o   q,n-1   s   n-1 o 

since the terms with q < n-1 vanish at the origin.  The force (37) would 

then become 

00 

F = - 4TTP i:   M  (D""'' V   ) (40) 
.  n  s   n-1 o n=1 

14 
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Appendix 

An Alternative Procedure for Deriving the Multipole Integrals 

The residues given in Table 1 may also be derived by applying a 

theorem due to Maxwell for the surface integral of the product of two 

harmonics of the same degree; see Hobson (1931, p. 157). This 

alternative procedure has the advantage that the singularity is located 

at the center of the sphere. It will be illustrated by rederiving 

residue (4). 

Associated with the multipole potential (1) of degree -(q+1) we have 

the regular homogeneous harmonic of degree q, 

;;: 2q+l ,  , 
n = R    $„ (40) q        P 

Then 

^P = ^*P =^^ f% - (2q+1)a |] (41) 
R 

The  integral  in   (4)   then becomes 

/ n.UpfdS  = -^^ /   [n.va    - ^ (2q+1)a  IWS 
S c S 

^ / v^^ = - -^ / ^V^ ^^'^ 

by (17) and (16a), and the orthogonality of the harmonics.  The Maxwell 

formula then gives 

- 4TrM   2q+2  q , ,^, 
/ Vq^S = -^^c     D^fg (43) 

in  which,  in the  limit as c->-o, f may be  replaced by 4*, by  (21). 
q 

Substitution of (43) into (42) then gives the residue (4). 
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